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ABSTRACT "-""

Fractional factorial designs have been used successfully in industry and

elsewhere to detect and estimate sparse factor effects. The effects usually

envisioned measure changes in location associated with the experimental

factors. In this paper we consider the possibility of detecting and estimating

sparse dispersion effects measuring changes in variance associated with the

factors.
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SIGNIFICANCE AND EXPLANATION

Unreplicated fractional factorial designs are frequently employed as

screening designs in industrial experimentation. Current methods of analysis

are primarily concerned with determining the effect of experimental variables

on the mean value or location of the response y in terms of the usual main

effects and interactions which we will here call location effects. We

consider in this paper the possibility that the variables may also affect the

variance of y analogously through dispersion effects. The nature of the

alias relationships between location and dispersion effects is discussed and a

method developed for identification of dispersion effects when location

effects are also present.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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STUDIES IN QUALITY IMPROVEMENT I:
DISPERSION EFFECTS FROM FRACTIONAL DESIGNS

George E.P. Box and R. Daniel Meyer*

1. INTRODUCTION

Table 1 shows in summary a highly fractionated two-level factorial design employed as

a screening design in an off-line welding experiment performed by the National Railway

Corporation of Japan (Taguchi and Wu, 1980). To the right of the table is shown the

observed tensile strength of the weld, one of several quality characteristics measured. -

The authors assumed that, in addition to main effects only the interactions AC, AG,

AH, and GH might be present. On that supposition, all nine main effects and the four

selected two-factor interactions can be separately estimated by appropriate orthogonal

contrasts and the two remaining contrasts corresponding to the columns labelled e and

e2 measure only experimental error. In the last row of the table are shown the grand

average and the fifteen effect contrasts calculated in the usual manner. In this paper

these will be referred to as "location" effects. They are plotted in a dot diagram below

the table. A normal probability plot (Daniel 1959, 1976) shows thirteen effects roughly

following a straight line with main effects B and C, falling markedly off the line.

This suggests that, over the ranges studied, only factors B and C affect tensile

location by amounts not readily attributed to noise.

On the assumption, then, that B and C are the only important location effects, the

sixteen runs could be regarded as four replications of a 22 factorial design in factors

B and C only. However when the results are plotted in Figure I so as to reflect this,

inspection suggests the existence of a dramatic effect of a different kind apparently not

'This is a revised version of TSR #2746

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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previously noticed. When factor C is at its minus level, co7 responding to the use of an

alternative material, the spread of the data appears much larger than when C is at its

plus level. Thus in addition to detecting shifts in location due to B and C, the

experiment may also have detected what we will call a dispersion effect due to C.

This, of course, is not the only possible explanation of the data. If, instead of .4

adopting the assumptions of the authors, it has been supposed, for example, that all two-

factor interactions might be appreciable, then, because of the identity -BCD

1 x 14 x 15 - I in the defining relation of the design, the large contrasts associated

with columns 14 and 15 could have been due to B and C as postulated or

alternatively to B and BD or to C and CD. The data might also be accounted for by

supposing that certain of the tested factors other than B and C affected C only at

its minus level. Analysis of the eight runs made at the minus level of C do not support

any simple explanation of this kind. However screening designs should normally be

employed in a sequential process of investigation where the alternative possibilities

which they offer may be resolved in subsequent experimentation. (See, for example, the

discussion of Tippett's cotton experiment on pages 88-90 of Fisher (1966) also Box, Hunter

and Hunter 1978.) In an ongoing investigation therefore such possibilities ought to be

considered for further study. We shall pursue the implications of the simplest

explanation here while inviting the reader to bear all the above provisos in mind.

-3-'
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Figure 1. welding experiment data presented as four replicates
2

of a 2 factorial design in factors B and C only.
Arrows indicate sample averages.

-4-

IM



2. DISPERSION EFFECTS

Fractional arrangement and other orthogonal arrays introduced by Finney (1975),

Plackett and Burman (1946) and Rao (1947) have frequently been used in industry: see for

example Davies (1954), Daniel (1976), Box, Hunter & Hunter (1978). In particular they are

employed as screening designs when it is believed that the large effects it is desired to

detect come from only a small number of the tested factors. This may be called the

hypothesis of effect sparsity. The tensile data suggests the general possibility that the

use of unreplicated fractional designs might provide an economical way of detecting sparse

dispersion effects as well as sparse location effects. This idea is pursued in the

remainder of this paper. The procedures we discuss are for the identification stage of

the problem-solving iteration (see for example Box & Jenkins, 1976) suggesting tentatively

which factors might have location and which dispersion effects . Efficient maximum

likelihood estimation for fitting an identified model is briefly discussed at the end of

the paper.

Consider again the design of Table 1. There are 16 runs from which 16 quantities--

the average and 15 effect contrasts--have been calculated. Now if we were interested in

possible dispersion effects we could also calculate 15 variance ratios. For example, for

the i'th column we could compute the sample variance s2 (i-) from the eight observations

associated with a minus sign and compare it with the sample variance s2 (i+) from the

eight observations associated with a plus sign, to provide the ratio Fi - s2(i+)/

2i-). If this is done for the fifteen contrast columns of welding data the values for

InF i given in Figure 2(a) are obtained.

It will be recalled that in the earlier analysis a large dispersion effect was

associated with factor C (column 15). However in Figure 2(a) the dispersion effect for

this factor is not especially extreme, instead the effect for factor D (column 1) stands

out from all the rest. We will see how this may be accounted for by the aliasing of

location and dispersion effects which we now consider in a preliminary way. -'

-5-
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Since the sixteen location effects are obtained by non-singular linear transformation

of the original sixteen data values, calculated dispersion effects must be functions of

the location effects. The general nature of the location-dispersion aliasing is explained

in the section 3 which follows. It is shown that each dispersion effect is a ratio of Ao,Ikt.V 7
susand differences of the location effects. For immediate illustration equation (1)

shows the identity that exists for the F ratio associated with factor D, and hence for

column 1, of the design. In this expression i is used to indicate the location contrast

associated with the ith column.

2 .. 2 , 2 , 2 .2 2 ~. 2
(2+3) + (4+5) + (6+7) + (8+9) + (10+11) + (12+13) + (14+15)

D 12 . 2 . 2 . 2 2 2 2(1
(2-3) + (4-5) + (6-7) + (8-9) + (10-11) + (12-13) + (14-15)

This equation shows in particular how the extreme value for FD, can be accounted by

the location effects B=14 = 2.15 and -C = 15 = _.10 whose squared sum and squared

difference appear respectively in its numerator and denominator.

A natural way to try to eliminate such aliasing is to compute variances from the

residuals obtained after least squares modelling of large location effects. We show in

Section 3 that after such elimination alias relations such as equation 1 remain of the

same form but with location effects from eliminated variables removed. Dispersion effects

F~calculated from residuals after eliminating the location effects of B and C are

1+

shown in Figure 2(b). It is seen that an extreme dispersion effect is now associated

with C agreeing with our earlier analysis.

74

-6-
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3. DISPERSION AND LOCATION ALIASING

3.1. Identities Existing Between Dispersion and Location Effects

In order to study the identity relations existing between location and dispersion

effects consider an n x n orthogonal array with n = 2 q columns of -1's and +1's

labelled x0'1,..'.,n-1 Let 40 = 1 be a column of +1's and the remaining columns

delineate the usual contrasts for the main effects and interactions of a 2q factorial

design. In general we suppose that the array is to be used either as a 2
k -p  

fractional

or as a full factorial to test k factors, so that q = k - p with p ) 0.

To generate the columns of a 2 q orthogonal array it is convenient to begin by

writing a full factorial for q letters employing Yates' standard order columnwise. We

then label columns from zero to n-1 (as illustrated below and in Table I for q = 3 and

q = 4 respectively). In practice a design with n - 8 would usually be too small to

allow variance effects to be usefully studied. We employ it here only to illustrate the

argument.

0 1 2 3 4 5 6 7

I A B AB C AC BC ABC

+1 -1 -1 +1 -1 +1 +1 -1
+1 +1 -1 -1 -1 -1 +1 +1
+1 -1 +1 -1 -1 +1 -1 +1
+1 +1 +1 +1 -1 -1 -1 -1

+1 -1 -1 +1 +1 -1 -1 +1

+1 +1 -1 -1 +1 +1 -1 -1
+ 1 -1 +1 -1 +1 -1 +1 -1
+1 +1 +1 +1 +1 +1 +1 +1

As is well known an array generated in this way may be used as a full factorial or as a

fractional design. For example, associating three factors with columns 1, 2, 4 above

reproduces the 23 factorial, four factors associated with columns 1, 2, 4, 7 produces a

24-1 7-4 "
2 fractional, seven factors associated with columns 1 through 7 produces a 2 7-
IV III

fractional. The roman subscript is used to denote the design resolution: that is the

lenqth of the shortest word in the defining notation (see, for example Box & Hunter

(1961 )

.i6



Now because the columns n0,2j1,...,1n-1 form a group closed under multiplication

defined such that the product column x., has for its uth lement xilu = Xuxju

any such product column must be a column of the original array.

Consider now the elements of a column 1/2 ( 0 t 4i)(i * 0); these are

+I if xiu = -I

1/2(Xou - X0) = if X. = +1

(2)
0 if Xi. -1

1/2 (Xnu + xiu) +0 if x +

if X +

Also the elements of a column 1/2 (x. ± xij) are

Xju if Xiu , -1

1/2 (xu - xij u )  xju(x Ou iu 0 if x +

(3)

0 if x. -1
lu

1/2 Xju + xiju u'1 ou + Xiu
x-u. if x. = +1

To see how this may be used to study location and dispersion aliasing consider for

illustration the 23 design. Suppose we wished to compare varianceL at the lower and

upper level of factor C =4 Then the columns 1/2 (x. - x 4 .) are

j4 1 5 2 6 3 7

+1 -1 -1 +1 -1 +1 +1 -1
+1 -1 +1 -1 -1 +1 -1 +1
+1 -1 -1 +1 +1 -1 -1 +1
+1 -1 +1 -1 +1 -1 +1 -1

1/2 (4j ;- j, ) 0 0 0 0 0 0 0 0 -
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

In general for every i the columns (5 - x.. j ) will appear in pairs
j 2

identical apart from sign. Now suppose data X = (yI. .'Yu'''''Yn are available and

-9-
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let i = x from which the estimated effect of factor j may be obtained by dividing

by an appropriate constant. Then for every i the quantities X'(x - x. ) = j - i..j

provide an exhaustive set of n/2 linearly independent contrasts of those n/2 observa-

tions yu for which Xiu = -1. Correspondingly, the columns Aj + Asi.j provide a

similar set of contrasts for the remaining observations for which Xiu = +1. Denote by .

S(i-) and S(i+) the sums of squares of the y. for which xiu -1 and +1

respectively. Then

SCi-) 1 ni /2 X' - xUS )]

j=0 j=0

(4)

1 n- 1  
n-i I +i )2

s(i)=n 1 i.j n
j=0 j0

For example, returning for illustration to the 8 x 8 array discussed above -

S(4-) = y12 
+ y22 + y32 + y4

2 5 2"2 2 2 "2 -32

26+ + (ji ( + 2 )+ (7j)8 .22. 2 2 2

= 1 [(0-4) + -5- + -6-4 2 "-+

1. (_ + (A-ACJ + 2BBC + 2A-AC (5)

3.2. Elimination of Location Effects

The sums of squares in (4), (5) would be appropriate to compute dispersion effects

only if it could be assumed that all the location effects, including the overall mean,

were known to be zero. If this were not the case then the sums of squares S(i-) and

S(i+) could be inflated by location effects. To remove such effects we can replace the

yu*s in (5) by residuals y - y obtained after eliminating all suspected location

effects, including the mean, by least squares. Since for this mode of estimation the

-10-
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vector of residuals is orthogonal to each column vector corresponding to an eliminated

variable, it follows that the identity relation for a sum of squares calculated from such

residuals is still expressed by equation (4) but with all estimated contrasts

corresponding to eliminated variables set equal to zero.

3.3. Expected Values of Sums of Squares of Residuals

Further understanding is gained by considering the expected values of Sti-) and

S(i+) under various circumstances. Suppose a difference in variance might exist

associated with the level of the single column )i and the sums of squares S(i-) and

S(i+) are computed from (4) but with yu replaced by residuals after a number of

location effects have been eliminated. Then, after setting to zero all the elements

and ij in (5) which correspond to eliminated variables, suppose there are I cases

where bracketed pairs (j, ij) have been eliminated and m cases where only one element

of a bracketed pair has been eliminated so that there remains - £ - m complete

bracketed pairs.

For a bracketed pair

n 2

and for a single element

[2- 1 ^1] 1 (, 2
i_) + a2 i+)) (7)

It follows that

E[S(i-)] n - _ -1 m)0 Ci-) + ma2 1i+) (8)

E[S(i+)J = C-n - _ - 2 _m)o
2 (1+) +.1mc

2 (i-) • (9)
2 4 4

If we now define

2 1 1
s 2i-) S(i-)/( n - £ - m) , (10)

then

1 Es 2 ( i)2 = 2 (i-) + m (02(i) -02(C-)) (11)

and similarly for s2 (i+) with the roles of 2 (i-) and o2 (1+) reversed.

-11-
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3.4. Some Illustrations with the 8 x 8 Array

The general situation may be better understood by considering a few special cases

again using for illustration the 8 x 8 factorial array. Setting i - 4 C, suppose we

wish to obtain the dispersion effect s 2(4-)/s 2(4+) which contrasts the variances of the

first four and last four observations.

Elimination of Grand Mean: Elimination of the mean (which would usually be unknown)

results in the removal of 0 in equations (4). For the 8 x 8 array; n = 8, L - 0,

m=1

s2(4
-
) = ((4)2 + (; 5)2 + g _ 6)2 + (; 7)2)}1(7/2)

() 16 /72

and using (11)

E[s 2 (4-)J = o2(4- ) +-- [02(4+) - 024_)]

14 (+ 4)

It will be seen that the slight bias in the variance estimate arises because the isolated

effect 4 is a function of all eight observations.

Elimination of the Mean and of Effect 4 : If the location effect associated with

factor 4 is eliminated as well as the overall mean then a complete pair is removed in

(5) and in this example

s2(4-) = fg{(; - )2 + (3 6)2+ (5_ )2}/3

E[s
2
(4-)J = 02(4

-
)

No bias now occurs because elimination of 0 and 4 is equivalent to eliminating means

separately from the first four and the last four observations, and s2(4 - ) becomes a

function of only the first four observations. Similar effects are found with all

bracketed pairs. Thus if we eliminate factor 2 and the interaction 2*4 = 6 the bias

term does not appear because allowance is being made for different effects of factor 2 at

the two levels of factor 4.

In the circumstances of effect sparsity here considered, the bias term in (11)

involving 02 (i+) - 02 (i-) would usually be rather small. For example, suppose, with a

-12-
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design having n 16 runs, that X 2 and m - 1, then the bias term will be

102(1+) - 0
2
(i-)}/22. It seems reasonable to conclude that for purposes of model

identification the elimination of location effects by simply taking residuals is unlikely

to mislead.

However, if desired, appropriate linear combinations of equations (8) and (9) will

2 2yield unbiased estimates 2(i-) and A2(i+) as follows:

.2 2s ( _ - 2(i+),

8 i-) s (i-) + T 51 ss2(,

2 ( +) 2 1+ + m (.2(i+) . 2(i_))2n-4L -4mA2(i+) =s(i+) + 2n-4T-4m(si -

3.5. Dispersion Interactions

Since more than one dispersion effect might be present we need to consider the

possibility of interaction. If the effect of changing from the minus level to the plus

level of a factor i is to multiply the variance by *i irrespective of whether the plus
or minus level of factor j is employed we shall say that there is no dispersion

interaction between i and j. In such a case the variances for the various factor

combinations are as follows

+ 02 (i-,j+) a 2 02 (i+,j+) - *i 02

- 02(i-,j-) = 02 02(i+,j-) -

- i +

Equivalently for the logged variances the dispersion effects will be additive and in this

metric dispersion interactions of all orders may be defined in the usual way. It shall be

noted that when there is no dispersion interaction the ratio of the average variance at

the plus and minus levels for factor i is

2 2 (a (i+,j-) + 02(i+,3+) i +

02 (i-,j
- ) + 02 (i-,j+) (1 + ,.)a2

and similarly for factor j and t. Thus even when there is more than one dispersion

effect the simple analysis described above could still be of value as a preliminary analyti-

cal device for indicating which factors needed further study. In particular if two factors

-13-
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i and j appeared to exhibit dispersion effects, then further analysis would be

appropriate to consider the general evidence for activity of these effects taking account

also of possible interaction. This could be done by considering general differences among

the sums of squares associated with the four cells S(i-,j-), S(i-,j+), S(i+,j-), S(i+,j+)

of the two-way table for the two factors. As before these sums of squares would be

calculated from residuals after eliminating location effects. The consequences of doing

this is explored in the Appendix which gives a matrix generalization of earlier results.

2 2
A convenient function for comparing a set of variances s1,...,s k having vl,...,Uk

degrees of freedom respectively is Bartlett's criterion,

INnN kvs2) k 2 k
- In a where N S I Vt

t.1t t1 t t-1l

When, as would frequently be the case, the screening design is of only moderate size one

could not expect to study simultaneously a large number of factors in this way. For

example, for n - 16, the individual cells from which S(i-,j-) S(i-,j+), etc. would be

calculated will each contain only four observations. However when, in circumstances of

effect sparsity, only a very few such effects are likely to be of appreciable magnitude,

Nthe above analysis could be of value.

We again illustrate with the welding data. Figure 3(a) shows the 35 distinct values

of M computed for the data. There are ( ) 105 ways of choosing two columns from

the 15 columns of the design but these are aliased in sets of three (any column is the

product of two other columns). Thus the largest value is associated with columns 15 = C,

2 = H, and 13 = J. This effect could equally well be attributed to factors C and H

with interaction -CH = J or to C and J with interaction -CJ = H or to H and J

with interaction -HJ - C. It is noteworthy however that the seven largest values of M

which stand out from the rest all include factor C in their triplets. Also if the

dispersion effect of C is eliminated by rescaling the residuals the plot (Fig. 3(b)) no

longer shows outstanding points.

'.1
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(C,B,D) (C,H,J)

L a,

0 3.5 7 I10.5 14

5% 1

0 3.5 7 10.5 1
o 3.5

Figure 3. Values of 141 for distinct column triplets (a) before
(b) after elimination of'the possible dispersion effect
due to factor C. As a rough guide the normal theory
5% and 1% significance levels of M4 are shown although
as before they are not formally justifiable.
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4. MAXIMUM LIKELIHOOD ESTIMATES OF LOCATION AND DISPERSION EFFECTS

Once a model has been identified a more precise fitting is possible using maximum

likelihood. Hartley and Jayatillake (1973) have shown that the following method will give

convergence to a stationary point of the likelihood. Conditional on the dispersion

effects, location effects may be obtained by weighted least squares; the dispersion

effects may now be recomputed from the residuals and the iteration continued until

. covergence is achieved. It is often convenient to assume initially that there are no

dispersion effects.

For illustration the following table shows maximum likelihood estimates for the

welding data assuming location effects for B and C and a dispersion effect for C.

The earlier approximate estimates are indicated for comparison.

2 2(c-)

B -C a (C-) a 2C+) a 2c+1

Maximum likelihood estimates 42.96 2.04 3.10 .469 .021 22.3

Earlier approximate estimates 43.00 2.15 3.10 .564 .031 18.2

Table 2. Estimates of location and dispersion affects: welding data.

Appendix

The results of section 3 can be generalized to two variables using matrix algebra.

Again, X is a matrix of ±1's with orthogonal columns 0, n1 is the vector

of observations, and j = SjX. Define I(*) to be a n x n diagonal matrix with 1's in

those rows for which the condition * is true, O's elsewhere. Then, for example,

I(i-) is diagonal with 1's in rows where X, = -1; I(i-,j-) is diagonal with 1's in rows

where xi= x. = -1; I is the identity matrix.

The following four identities,

5(u±) =(;(i±)'WLi±)

9 =  XX'

-16-
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imply, after some algebra, the previously shown identity,

Sci-) n2 :.C j)2

Extending to two variables, the additional identity

implies -
1 n-1 2

S~-,-)= ~- j(k -ik - k + i-j k)
S(''J) -n k0

1 n-1 (k ik+jk ijk 2I ~~~~S(i-,j+) = k- 6 +jk njk

S(i+,j-) (k 1 i- j-k -ij-k )2I

In-I 2S(i+,J+) = i-n ~.(k + i-k + j-k + i-j-k)
k0

Now to compute expectations of these quantities, suppose that Z is the n xp

matrix of columns of X which correspond to location effects included in the model, i.e.,

eliminated to obtain residuals. Then, assuming E[X] ZT, and using the identity

E[y'X trace (_[X)

for A symmetric,

E[S(i-,j_)] L n _
2
pa

2 (i-,j-) + )trace [zz'Ii-,j-)ZZxIi±,j±Jo("i±,j±)

where summation is over the four possible combinations of i±,j±. To compute the trace in

the above expression, we divide the columns of Z into four groups:

-17-
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Group 4: Those columns Xk such that XSi* 2k' Aj-7k and Ii *2j -Ak are also in Z

Group 3: Those coluns zk such tha exactly two of x i*k' Zj'Zk' 251*j*Zk

are also in ~

Group 2: Those columns z such that only one of x.*zk X.Zk xx z

is also in Z.

Group 1: Those columns not in previous three groups.

Let mk =number of columns in group k; note that '5k is a multiple of k. Further

subdivide group 2 into three subsets

UGroup 2.1: those pairs z with Eg
g' Z ~ i*Zk

Group 2.2: those pairs z ,zkwith gg.25 -9.'A g~~

Group 2.12: those pairs z ,z with =g
9g ~k Zg iZj*Zk

Let m2.k be the number of columns in group 2.k; m2  i 2.1  mi2.2 + 212

Then after some algebra,

0i2(_j) 4n-7p+ 3M 4 +2m 3 + M2

2 p-rn4  ~ 3 -in 2 +2m 22a (i-,,+)[ 16 21

2 p-M -2 n 2m2.
+ 2 4i,- 3 2. 2]

(i~l J+)16

Note that S(i-,j-) will be unbiased (up to a scale factor) if all columns of Z are in

group 4 (P = i 4, m3  m i 2 -ml =0) i.e. for each variable xk eliminated, variables

x. X~, x are also eliminated. Similar expressions for expectations of I
S(i-,j+), S(i+,J-) and S(i+,j+) can be worked out quite easily from the above formula



by switching signs on i±,j±. In particular, the expression for E(S(i-)] derived in

section 3.3 follows immediately with

02(i_) (,2 (i_,j_) + 02(i.,j+))

0
2
(i+) = 1 (02 i+,j-) + a2( i.,j+))

Thus the calculation of estimated dispersion effects defined as the change in the average

variance is not affected by the existence of more than one real dispersion effect.
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